换元法
\[\begin{aligned}&\int_a^b f(x)dx=\int_\alpha^\beta f(\varphi(t))d\varphi(t) \end{aligned}\]
- 目标: 求出定积分.
- 策略: 通过变量代换化简被积函数.
- 重点: 何时用?怎么用?
1 何时用换元法?
去根号. 如果含有根号, 不容易计算. 如 \[\begin{aligned}&\int_0^1 \sqrt{1-x^2}\ dx. \end{aligned}\]
被积函数是复杂的复合函数, 没有办法拆分, 化简. 如 \[\begin{aligned}&\int_0^1 x^2 e^{x^3}dx \end{aligned}\] 指数函数\(e^{x^3}\)的指数不能拆分, 只能当成一个整体处理.
2 怎么用换元法?
设\(f(x)\)在\([a,b]\)连续,\(x=\varphi(t)\)满足:
- \(\varphi(\alpha)=a,\varphi(\beta)=b\);
- \(\varphi(t)\)在\([\alpha,\beta]\)单调可导;
- \(\varphi'(t)\)在\([\alpha,\beta]\)连续;
则:\[\int_{a}^{b}f(x)dx = \int_{\alpha}^{\beta}f[\varphi(t)]\cdot\varphi'(t)dt.\]
- 关键是选择合适的函数.
- 要换全换. 参考下面的例题.
求 \(\displaystyle\int_{0}^{a}\sqrt{a^2-x^2}dx\;(a>0).\)
令\(x=a\sin t\),则 \[dx=a\cos tdt.\]
列表确定上下限
| \(x=a\sin t\) | \(0\) | \(a\) |
|---|---|---|
| \(t\) | \(0\) | \(\frac{\pi}{2}\) |
- 要换全换(积分区间, 被积函数, 积分变量\(dx\)) \[\int_{0}^{a}\sqrt{a^2-x^2}dx=a^2\int_{0}^{\frac{\pi}{2}}\cos^2t dt=\frac{\pi a^2}{4}.\]
- 说明: 积分上下限要对应, 没有大小关系.
3 常用公式
设函数\(f(x)\)在对称区间\([-a, a]\)上连续,则
- 若\(f(x)\)为偶函数,则 \[\int_{-a}^{a} f(x) dx = 2\int_{0}^{a} f(x) dx.\]
- 若\(f(x)\)为奇函数,则 \[\int_{-a}^{a} f(x) dx = 0.\]
拆分积分区间 + 换元法(令\(x = -t\)).
首先,根据定积分的区间可加性,将积分拆分为两段: \[ \int_{-a}^{a} f(x) dx = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx. \tag{1} \]
对积分\(\int_{-a}^{0} f(x) dx\)做换元:令\(x = -t\),则: \[ \int_{-a}^{0} f(x) dx = \int_{a}^{0} f(-t) (-dt) = \int_{0}^{a} f(-t) .dt \]
由奇偶性即得.
设函数\(f(x)\)是以\(T\)为周期的连续函数(即\(f(x + T) =f(x)\), 对任意\(x\)成立),证明:
- \(\displaystyle\int_{a}^{a+T} f(x) dx = \int_{0}^{T} f(x) dx \tag{1}\)
- \(\displaystyle\int_{a}^{a+nT} f(x) dx = \int_{0}^{nT} f(x) dx = n\int_{0}^{T} f(x) dx \tag{2}\)(其中\(n\)为正整数)
并利用上述性质计算定积分: \(\displaystyle\int_{0}^{2\pi} \sqrt{1 - \sin2x} dx\)
将积分拆分为三段: \[\int_{a}^{a+T} f(x) dx = \int_{a}^{0} f(x) dx + \int_{0}^{T} f(x) dx + \int_{T}^{a+T} f(x) dx.\]
对第三个积分\(\int_{T}^{a+T} f(x) dx\)换元:
令\(x = t + T\),则:
- 微分变换:\(dx = dt\);
- 积分限变换:\(x=T \to t=0\),\(x=a+T \to t=a\);
- 周期性代入:\(f(x) = f(t+T) = f(t)\)。
代入后得: \[\int_{T}^{a+T} f(x) dx = \int_{0}^{a} f(t) dt = \int_{0}^{a} f(x) dx\]
结合\[\int_{a}^{0} f(x) dx = -\int_{0}^{a} f(x) dx,\] 化简得: \[\int_{a}^{a+T} f(x) dx = -\int_{0}^{a} f(x) dx + \int_{0}^{T} f(x) dx + \int_{0}^{a} f(x) dx = \int_{0}^{T} f(x) dx\]
等式(1)得证。
\[\int_{a}^{a+nT} f(x) dx = \sum_{k=0}^{n-1} \int_{a+kT}^{a+(k+1)T} f(x) dx.\]
对每个子积分换元结合等式(1)得: \[\int_{a+kT}^{a+(k+1)T} f(x) dx = \int_{a}^{a+T} f(u) du = \int_{0}^{T} f(x) dx\]
因此: \[\int_{a}^{a+nT} f(x) dx = n \cdot \int_{0}^{T} f(x) dx\]
令\(a=0\),则\[\int_{0}^{nT} f(x) dx = n\int_{0}^{T} f(x) dx,\]等式(2)得证。